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Let’s start with a few questions

1 What is an optimization problem?
2 What is process optimization?
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Optimization for process modeling (1/4)
Three shades of models

First-principles models (white)

Friday May 3 2024, 13:46:37 Case: \\Mac\Home\Documents\Work\Teaching\CoursesUniPi-current\SSPC\Agenda\AA_2022-2023\FileClasse_2022-23\class06.usc Flowsheet: Case (Main)
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Detailed models, based on first
principles (mass, energy,
momentum balances, etc.)
Involve several parameters
Possibly complex to solve
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Optimization for process modeling (2/4)
Three shades of models

Black-box (statistical)

Empirical models based on
various expressions (linear,
polynomial, etc.)
Require experimental data from
the plant
The model parameters are
obtained via regression
techniques

Grey-box models
Similar to white-box models, but with (some) parameters determined from plant data
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Optimization for process modeling (3/4)
Model classification

Linear vs nonlinear
Most fundamental relations are nonlinear; however, they can be (locally) linearized
Linear models are simple (simplistic) but often useful

Static vs dynamic
Static models take some (static) inputs and produce the corresponding (static) output
Dynamic models take some time-series input to produce the output at a given time
Note that static models can also be used for dynamic purposes

Deterministic vs stochastic
Deterministic models produce the same output given the same set of inputs
Stochastic models take into account the effect of some random inputs, hence generate a
distribution of outputs given a set of deterministic inputs
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Optimization for process modeling (4/4)
Data-driven modeling: an iterative loop

Conceptual steps to build a data-driven model

Input 
design

Data 
collection

Prior knowledge

Model set

Fit criterion

Parameters identification

Model
Validation

Good model

Bad model

Prior knowledge: from plant operators/engineers
and some preliminary tests
Input design: fundamental steps to cover the
operating range of the plant
Data collection: it is expensive so its duration
should be limited
Model set/Fit criterion: require experience and
engineering sense
Parameters identification: numerical algorithms
are quite reliable nowadays
Model validation: not easy to understand what
went wrong
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Optimization for process design

Design and optimization of a simulation model

Friday May 3 2024, 13:46:37 Case: \\Mac\Home\Documents\Work\Teaching\CoursesUniPi-current\SSPC\Agenda\AA_2022-2023\FileClasse_2022-23\class06.usc Flowsheet: Case (Main)
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Develop the process and
simulate it
Choose the process/unit
parameters (e.g., flow-rate,
temperatures, pressures, etc.)
Search for the most profitable
(CAPEX+OPEX) process/unit
parameters
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Optimization for Real-Time Optimization (1/4)
Hierarchical scheme of optimization, monitoring and control

Actuators and Sensors

Distributed Control System
(PID Controls)

Advanced process control (MPCs)

Real Time Optimization

Planning, Scheduling &
Monitoring

(< 10 ms)

(10-100 ms)

(30-120 s, tracking  economics)

(1-6 h,  plant economics)

(1-7 days, what/when to make)
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Optimization for Real-Time Optimization (2/4)
Steady-state process simulators

Friday May 3 2024, 13:46:37 Case: \\Mac\Home\Documents\Work\Teaching\CoursesUniPi-current\SSPC\Agenda\AA_2022-2023\FileClasse_2022-23\class06.usc Flowsheet: Case (Main)
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Optimization for Real-Time Optimization (3/4)
RTO and MPC: Bi-directional connection

RTO PlantMPCs

Filter

Filter

Economic
specs
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Optimization for Real-Time Optimization (4/4)
Examples of RTO and MPC variables

RTO variables MPC variables
Constraints Decisions to MPC Constraints Manipulated setpoints (in DCS)
Reactor conversion Desired targets Temperature Flow
Production rates Min/max limits Level Temperature
MPC constraints Costs/economic priorities Composition Pressure

Column DP Valve positions
Compressor power
Valve positions (PID outputs)
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Optimization for Advanced Process Control (1/5)
Hierarchical scheme of optimization, monitoring and control

Actuators and Sensors

Distributed Control System
(PID Controls)

Advanced process control (MPCs)

Real Time Optimization

Planning, Scheduling &
Monitoring

(< 10 ms)

(10-100 ms)

(30-120 s, tracking  economics)

(1-6 h,  plant economics)

(1-7 days, what/when to make)
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Optimization for Advanced Process Control (2/5)
Process flow diagram of multistage evaporation

Forward feed triple effect arrangement

Conditions for heat integration
For heat transfer to be possible: T1 > T2 > T3

This is achieved by operating at decreasing pressures: p1 > p2 > p3
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Optimization for Advanced Process Control (3/5)
Mass and energy balances of multi-stage evaporation

First evaporator
Overall mass balance: dM1

dt = F − L1 − V1

Solute mass balance: M1
dx1
dt = FxF + (V1 − F ) x1

Energy balance: M1 cp
dT1
dt = Fcp (TF − T1 )− V1λ+ Q

i−th evaporator (i = 2 , 3 )
Overall mass balance: dMi

dt = Li−1 − Li − Vi

Solute mass balance: Mi
dxi
dt = Li−1 xi−1 + (Vi − Li−1 ) xi

Energy balance: Micp
dTi
dt = Li−1 cp (Ti−1 − Ti)− Viλi + Vi−1λi−1
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Optimization for Advanced Process Control (4/5)
Conventional control architecture

CC

LCLC LC

TC TC TC

Decentralized control structure
Each controlled variable is paired with a manipulated variable
A SISO PID controller is used for each pairing
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Multivariable system features
Interactions: each manipulated variable affects more than one controlled variable
Directionality: it is easier to “move” the system in certain “directions” than in others
Both manipulated and controlled variables should satisfy certain (safety, quality, operation)
constraints

Opportunities
These needs coupled with economic reasons call(ed) for the adoption of advanced
optimization-based control techniques, able to:

Control all variables adjusting all manipulated variables simultaneously
Minimize energy and cost
Respect constraints
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Optimization for Advanced Process Control (5/5)
Advanced control architecture

CI

LILI LI

TI TI TI

Advanced Control 
System
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What is an optimization problem?

Optimization is used in all quantitative sciences and engineering. Its aim is to minimize (or
maximize) an objective function depending on decision variables subject to constraints

The three ingredients
1 w ∈ Rn: vector of variables
2 F : Rn → R: scalar objective function to be minimized
3 G : Rn → Rm: vector function of m equality constraints

H : Rn → Rp : vector function of p inequality constraints

Optimization problem

min
w∈Rn

F (w) s.t.

Gi(w) = 0 i = 1 , . . . ,m
Hi(w) ≤ 0 i = 1 , . . . , p

Only in few special cases a closed-form solution exists
When F , G , H are nonlinear and smooth, we speak of a nonlinear programming problem
(NLP)
Usually we need iterative algorithms to find an approximate solution
In RTO and APC, the problem depends on parameters that change every sampling time
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Example of an optimization problem

Example and standard form
Starting problem

min
w1 ,w2

(w1 − 2)2 + (w2 − 1)2 subject to
{

w2
1 − w2 ≤ 0

w1 + w2 ≤ 2

Rewritten in standard form
F (w) = (w1 − 2)2 + (w2 − 1)2 , w =

[
w1
w2

]
G(w) =

[]
, H(w) =

[
g1 (w)
g2 (w)

]
=

[
w2

1 − w2
w1 + w2 − 2

]
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Classification of optimization problems

Possible criteria of classification
1 Optimization problems can be: constrained or unconstrained
2 Optimization problems can be: continuous or discrete (or mixed)
3 Optimization problems can be: global or local

Our focus
We here address, mainly, constrained, continuous, local optimization problems and algorithms
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Optimization problems: Basic definitions
Feasible set and minimizers

The feasible set
The feasible set of the optimization problem is:
Ω{w ∈ Rn|G(w) = 0 , H(w) ≤ 0}

Basic definitions: the feasible set

Definition

The feasible set of the optimization problem (1) is defined as
⌦ = {w 2 Rn | G(w) = 0, H(w) � 0}. A point w 2 ⌦ is is called a feasible point.

In the example, the feasible set is the intersection of the two grey areas (halfspace and circle)

Nonlinear Optimization M. Diehl 3/41
The feasible set is the intersection of the two
grey areas (halfspace and circle)

Global and local minimizer
A point w⋆ ∈ Ω is a global minimizer if
F (w⋆) ≤ F (w) for all w ∈ Ω
A point w⋆ ∈ Ω is a local minimizer if there
exists a neighborhood N of w⋆ such that
F (w⋆) ≤ F (w) for all w ∈ N

Basic definitions: global and local minimizer

Definition (Global Minimizer)

Point w⇤ 2 ⌦ is a global minimizer of the NLP (1)
if for all w 2 ⌦ it holds that F (w) � F (w⇤).

Definition (Local Minimizer)

Point w⇤ 2 ⌦ is a local minimizer of the NLP (1) if
there exists a ball B✏(w⇤) = {w|kw � w

⇤k  ✏} with
✏ > 0, such that for all w 2 B✏(w⇤) \ ⌦ it holds that
F (w) � F (w⇤)

The value F (w⇤) at a local/global minimizer w⇤ is
called local/global minimum, or minimum value.
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Nonlinear Optimization M. Diehl 4/41

Gabriele Pannocchia (U. Pisa) Process Optimizazion: applications, methods and algorithms GRICU/Nest PhD School – CAPE Forum 2025 24 / 51



Optimization problems: Basic definitions
Convexity

Convex sets
A set Ω is convex if for any w1 ,w2 ∈ Ω and any
θ ∈ [0 , 1 ], it holds: θw1 + (1 − θ)w2 ∈ Ω

Convex sets

a key concept in optimization

A set ⌦ is said to be convex if for any w1, w2 and any ✓ 2 [0, 1] it holds ✓w1 + (1� ✓)w2 2 ⌦
Figure inspired by Figure 2.2 in S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

Nonlinear Optimization M. Diehl 5/41

Convex functions
A function F : Ω → R is convex if for any
w1 ,w2 ∈ Ω and any θ ∈ [0 , 1 ], it holds:
F (θw1 + (1 − θ)w2 ) ≤ θF (w1 ) + (1 − θ)F (w2 )

Convex functions

I A function F : ⌦ ! R is convex if for
every w1, w2 2 ⌦ ⇢ Rn and ✓ 2 [0, 1] it
holds that

F (✓w1+(1�✓)w2)  ✓F (w1)+(1�✓)F (w2)

I F is concave if and only if �F is convex

I F is convex if and only if the epigraph

epiF = {(w, t) 2 Rnw+1 | w 2 ⌦, F (w)  t}

is a convex set
w

F
(w

)

(w1; F (w1))

(w2; F (w2))

3F (w1) + (1! 3)F (w2)

F (3w1 + (1! 3)w2)
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Optimization problems: Basic definitions
Convex optimization problems

A convex optimization problem

min
w∈Rn

F (w) s.t.

G(w) = 0
H(w) ≤ 0

in which:
F (·) is a convex function
Ω{w ∈ Rn|G(w) = 0 , H(w) ≤ 0} is a
convex set

Properties of convex problems
For convex problems, every locally
optimal solution is globally optimal
First order conditions are necessary and
sufficient
“...in fact, the great watershed in
optimization isn’t between linearity and
nonlinearity, but convexity and
nonconvexity.” R. T. Rockafellar, SIAM
Review, 1993
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Unconstrained optimization: preliminary definitions
Definitions

A point w⋆ ∈ Rn is a global minimum if F (w⋆) ≤ F (w) for all w ∈ Rn (or in the domain for
which F (·) is defined)
A point w⋆ ∈ Rn is a local minimum if there exists a neighborhood N of w⋆ such that
F (w⋆) ≤ F (w) for all w ∈ N

Fundamental result 1
If F (·) is differentiable, then for any p ∈ Rn:

F (w + p) = F (w) +∇F (w + tp)T p with t ∈ (0 , 1)

Fundamental result 2
If F (·) is twice differentiable, then for any p ∈ Rn:

F (w + p) = F (w) +∇F (w)T p +
1
2 pT∇2 F (x + tp)p with t ∈ (0 , 1)
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Optimization problems: common classes
Class 1: Linear programming (LP)

Linear Program (LP)

min
w∈Rn

g⊤w s.t.

Aw − b = 0
Cw − d ≤ 0

Class 1: Linear Programming (LP)

Linear program

min
w2Rn

g
>
w

s.t. Aw � b = 0

Cw � d � 0

I convex optimization problem

I 1947: simplex method by G. Dantzig

I a solution is always at a vertex of the feasible set (possibly a whole facet if nonunique)

I very mature and reliable

Nonlinear Optimization M. Diehl 9/41

Convex optimization problem
1947: simplex method by G. Dantzig
A solution is always at a vertex of the feasible set (possibly a whole facet if nonunique)
Very mature and reliable, with many applications in planning/scheduling problems
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Optimization problems: common classes
Class 2: Quadratic programming (QP)

Quadratic Program (QP)

min
w∈Rn

1
2 w⊤Qw + g⊤w s.t.

Aw − b = 0
Cw − d ≤ 0

Class 2: Quadratic Programming (QP)

Quadratic Program (QP)

min
w2Rn

1

2
w

>
Qw + g

>
w

s.t. Aw � b = 0

Cw � d � 0

I depending on Q, can be convex and nonconvex

I solved online in linear model predictive control

I many good solvers: Gurobi, OSQP, HPIPM, qpOASES, OOQP, DAQP...

I subsproblems in nonlinear optimization

Nonlinear Optimization M. Diehl 10/41

Convex optimization problem when Q positive definite
Solved online in Linear Model Predictive Control
Many good solvers
Subproblems in nonlinear optimization
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Optimization problems: common classes
Class 3: Nonlinear programming (NLP)

NonLinear Program (NLP)

min
w∈Rn

F (w) s.t.

G(w) = 0
H(w) ≤ 0

Class 3: Nonlinear Programming (NLP)

Nonlinear Rrogram (NLP)

min
w2Rn

F (w)

s.t. G(w) = 0

H(w) � 0

I can be convex and nonconvex

I solved with iterative Newton-type algorithms

I solved in nonlinear model predictive control

Nonlinear Optimization M. Diehl 11/41

Can be convex or nonconvex
Solved online in Nonlinear Model Predictive Control
Several good solvers, usually based on Newton-type algorithms

Gabriele Pannocchia (U. Pisa) Process Optimizazion: applications, methods and algorithms GRICU/Nest PhD School – CAPE Forum 2025 30 / 51



Optimization problems: common classes
Class 4: Continuous-Time Optimal Control (CTOC)

Optimal Control Problem (OCP)

min
x(·),u(·)

∫ T

0
ℓc(x(t), u(t))dt + V (x(T )) s.t.

x(0) = x̄
ẋ(t) = fc(x(t), u(t)), t ∈ [0 ,T ]

h(x(t), u(t)) ≤ 0 , t ∈ [0 ,T ]

r(x(T )) ≤ 0

Decision variables x(·), u(·) in infinite
dimensional function space
Infinitely many constraints (t ∈ [0 ,T ])

More general dynamic model can be used
(DAE, PDE, nonsmooth or stochastic ODE)
Can be convex or nonconvex
All or some components of u(t) may take
integer values (mixed-integer OCP)
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Constrained optimization: example 1
Solve

min w1 + w2 s. t. w2
1 + w2

2 = 2

Standard notation, feasibility region and solution
In standard notation: F (w) = w1 + w2 , G(w) = [2 − w2

1 − w2
2 ], H(w) = [ ]

Feasibility region: circle of radius
√

2 , only the border
Solution: w⋆ = [−1 ,−1 ]T

Observation

∇F (w⋆) =

[
1
1

]
, ∇G1 (w⋆) =

[
2
2

]
The normal vector at the constraint, ∇G1 (w⋆), is parallel to the cost function gradient ∇F (w⋆):

∇F (w⋆) + µ⋆
1∇G1 (w⋆) = 0 with µ⋆

1 = −1
2
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Constrained optimization: example 2
Solve

min w1 + w2 s. t. w2
1 + w2

2 ≤ 2

Standard notation, feasibility region and solution
In standard notation: F (w) = w1 + w2 , G(w) = [ ], H(w) = [w2

1 + w2
2 − 2 ]

Feasibility region: circle of radius
√

2 , including the interior
Solution: w⋆ = [−1 ,−1 ]T

Observation

∇F (w⋆) =

[
1
1

]
, ∇H1 (x⋆) =

[
−2
−2

]
The normal vector at the constraint, ∇H1 (x⋆), is parallel to the cost function gradient ∇f (x⋆):

∇F (x⋆) + λ⋆
1∇H1 (w⋆) = 0 with λ⋆

1 =
1
2
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Optimality conditions for constrained optimization
KKT conditions

Lagrangian Function
L(w ,µ,λ) = F (w) + µ⊤G(w) + λ⊤H(w)

Karush-Kuhn-Tucker (KKT) necessary conditions
If w∗ is a (local) minimizer, there exists vectors µ∗ and λ∗ such that (w∗,µ∗,λ∗) satisfies:

∇wL(w∗,µ∗,λ∗) = 0
G(w∗) = 0
H(w∗) ≤ 0

λ∗ ≥ 0
λ∗

i Hi(w∗) = 0 , i = 1 , . . . , p
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Unconstrained optimization: general strategies

Iterative algorithms
Starting from an initial point w0 , optimization algorithms generate a sequence of iterates {wk}k≥0 ,
and terminate when

1 No further progresses are possible or
2 It “seems” that the current iterate is a good approximation of the solution

Step computation
In deciding how to move from wk to wk+1 , numerical algorithms use information about f at the
current iterate wk and often at previous iterates (wk−1 , wk−2 , …)

Fundamental strategies
“Line search” methods
“Trust region” methods
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“Line search” strategy (1/2)

Basic idea
The “line search” strategy chooses a step direction pk and then try to minimize F (·) over the
segment connecting wk and wk + pk , i.e.

min
α>0

F (wk + αpk)

Most common directions
The most intuitive direction is the so-called “steepest descent”, i.e.:

pk = −∇F (wk)

Newton step (often the most effective):
pN

k = −[∇2 F (wk)]
−1∇F (wk)

“quasi-Newton” step (cheaper to compute):
pk = −B−1

k ∇F (wk) with Bk ≈ ∇2 F (wk)
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“Line search” strategy (2/2)
Sufficient decrease condition

Instead of solving the unidimensional problem
min
α>0

F (wk + αpk)

we look for a step length αk that satisfies certain conditions
A sufficient decrease condition is called Wolfe condition:

F (wk + αkpk) ≤ F (wk) + c1αk∇F (wk)
T pk

with c1 small (∼ 10−4 )

Backtracking
1 Set αk = αmax (usually αmax = 1 )
2 Check the Wolfe condition. If satisfied, go to Step 4. Else, go to Step 3
3 Decrease αk , and go to Step 2
4 Define new iterate: wk+1 = wk + αkpk
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“Trust region” strategy (1/2)

Basic idea: a model function
Build a model function mk(·) which approximates F (·) near wk

Compute the step that minimizes mk(·) with a trust region
min

pk
mk(wk + pk) where wk + pk is in the trust region

Quadratic model and step evaluation
The most common model function is quadratic. Hence, we solve:

min
pk∈Rn

mk(pk) = F (wk) +∇F (wk)
T pk +

1
2 pT

k Bkpk s.t. ∥pk∥ ≤ ∆k

Very often we use an approximate solution (a.k.a. Cauchy point). Let gk = ∇F (wk). Then:

pk = −gk
∆k
∥gk∥τ

⋆, with τ⋆ =

{
1 if gT

k Bkgk ≤ 0
min

(
∥gk∥3

∆k gT
k Bk gk

, 1
)

otherwise
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”Trust region” strategy (2/2)

Step acceptance/rejection and trust-region size changes
In order to decide whether the step is acceptable or not, evaluate:

ρk =
F (wk)− F (wk + pk)

mk(0)−mk(pk)

Rules of thumb:
▶ if ρk ≤ 1

4 : reject pk , i.e. wk+1 = wk , and reduce the trust-region ∆k+1 = 1
4 ∆k

▶ if ρk ≥ 1
4 , accept pk , i.e. wk+1 = wk + pk

▶ if ρk ≥ 3
4 and ∥pk∥ = ∆k , accept pk , i.e. wk+1 = wk + pk , and enlarge the trust-region ∆k+1 = 2∆k
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Linear programming (LP): introduction
LP in standard form

min
w

gT x subject to Aw = b, w ≥ 0

where: g ∈ Rn, w ∈ Rn, A ∈ Rp×n, b ∈ Rp and rank(A) = p

Optimality conditions
Lagrangian function: L(w ,µ,λ) = gT w + µT (Aw − b)− λT w
If w⋆ is solution of the linear program, then:

g + ATµ⋆ − λ⋆ = 0
Aw⋆ = b

w⋆ ≥ 0
λ⋆ ≥ 0

w⋆
i λ

⋆
i = 0 , i = 1 , . . . , n
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Linear programming (LP): the simplex method

The “base points”
A point w ∈ Rn is a base point if

Aw = b and w ≥ 0
At most p components of w are nonzero
The columns of A corresponding to the nonzero elements are linearly independent

Fundamental aspects of the simplex method
Base points are vertices of the feasibility region
The solution is a base point
The simplex method iterates from a base point wk to another one wk+1 , and stops when all
components of λk are nonnegative
When a component of λk is negative, a new base point wk+1 in which the corresponding
element of wk is nonzero is selected
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Quadratic Programming (QP)
Introduction

Standard form

min
w∈Rn

1
2 wT Qw + gT w

subject to:

Aw − b = 0
Cw − d ≤ 0

The active set
A(w) = {i ∈ {1 , . . . ,m} | (Cw − d)i = 0}
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Quadratic Programming (QP)
Optimality conditions

Lagrangian function

L(x ,µ,λ) = 1
2 wT Qw + gT w + µT (Aw − b) + λT (Cw − d)

Optimality conditions (KKT)

Qw⋆ + g + ATµ⋆ + CTλ⋆ = 0
Aw⋆ − b = 0
Cw⋆ − d ≤ 0

λ⋆
i ≥ 0 i = 1 , . . . ,m
λi = 0 i /∈ A(w⋆)
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Quadratic Programming (QP)
Active set methods for convex QP problem

Fundamental steps
1 Given a feasible wk , we evaluate its active set and build:

Cac = C [i , :], dac = d [i ], for all i ∈ A(wk)

2 Express next iterate as wk + pk and solve the KKT linear system: Q AT CT
ac

A 0 0
Cac 0 0

 pk
µ
λac

 = −

 Qwk + g
Awk − b

Cacwk − dac


3 If ∥pk∥ ≤ ρ and λac ≥ 0 , stop: wk is the solution.
4 If ∥pk∥ ≤ ρ and λac ̸≥ 0 for some components, remove from the new active set A(wk+1 ) such

indices. k ← k + 1 and go to 2.
5 If ∥pk∥ > ρ, define wk+1 = wk + αkpk , where αk is the largest scalar in (0 , 1 ] such that no

inequality constraint is violated. When a blocking constraint is found, it is included in the new
active set A(wk+1 ). k ← k + 1 and go to 1.
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NonLinear Programming

Problem formulation

min
w∈Rn

F (w) s.t.

G(w) = 0
H(w) ≤ 0

Lagrangian Function
L(w ,µ,λ) = F (w) + µ⊤G(w) + λ⊤H(w)
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NLP solution algorithms
Sequential Quadratic Programming (SQP)

By linearizing all functions and setting w+ = wk + ∆w , µ+ = µk + ∆µ, λ+ = λk + ∆λ, we obtain
the KKT conditions of the following Quadratic Program (QP):

Inequality constrained Quadratic Program within SQP method

min
∆w∈Rn

1
2 w⊤Akw +∇F (wk)⊤∆w s.t.

G(wk) +∇G(wk)∆w = 0
H(wk) +∇H(wk)∆w ≤ 0

with: Ak = ∇2
wL(wk ,µk ,λk)

Its solution delivers the next SQP iterate: ∆wk ,µ+,λ+
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Solution methods for Optimal Control Problems
Overview

Three basic families
Dynamic Programming / Hamilton-Jacobi-Bellmann Equation
Indirect Methods / Calculus of Variations / Pontryagin’s Maximum Principle
Direct Methods, i.e., discretization combined with nonlinear programming

Pros and Cons
Dynamic programming
+ Searches whole state space

(global minimum)
+ Optimization feedback control

precomputed
+ Analytical solution possible in

some cases
- But, in general, intractable
(“curse of dimensionality”)

Indirect methods
+ Boundary value problems with

only 2nx ODE
- Need explicit expressions for
controls

- ODE strongly nonlinear and
unstable

- inequalities lead to ODE with
state dependent switches

Direct methods
+ Can use state-of-the-art NLP

solvers
+ Can treat inequality constraints
- Obtain only
suboptimal/approximate
solutions

Nowadays, most widely used
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Solution methods for Optimal Control Problems
Direct methods

Continuous-Time OCP

min
x(·),u(·)

∫ T

0
ℓc(x(t), u(t))dt + V (x(T )) s.t.

x(0) = x̄
ẋ(t) = fc(x(t), u(t)), t ∈ [0 ,T ]

h(x(t), u(t)) ≤ 0 , t ∈ [0 ,T ]

r(x(T )) ≤ 0

Direct methods first discretize, then optimize

Discrete-Time OCP

min
x(·),u(·)

N−1∑
k=0

ℓ(xk , uk) + V (xN) s.t.

x0 = x̄
xk+1 = f (xk , uk), k = 0 , . . . ,N − 1

h(xk , uk) ≤ 0 , k = 0 , . . . ,N − 1
r(xN) ≤ 0

Variables x = (x0 , . . . , xN), u = (u0 , . . . , uN−1 )
can be lumped in vector w = (x , u) ∈ Rn

min
w∈Rn

F (w) s.t.

G(w) = 0
H(w) ≤ 0
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Conclusions

General comments
Numerical optimization is powerful and useful for may areas of science and engineering
The most reliable and efficient algorithms are for linear programming (LP) and quadratic
programming (QP) problems
Nonlinear programming (NLP) problems are solved by means of Sequential Quadratic
Programming (SQP) algorithms, which are very effective (global solution can be found) only
for convex problems

Numerical optimization in Aspen Hysys/UniSim Design
UniSim Design contains a general purpose SQP optimizer
One can use the optimizer to find the operating conditions which minimize (or maximize) an
objective function subject to constraints

Gabriele Pannocchia (U. Pisa) Process Optimizazion: applications, methods and algorithms GRICU/Nest PhD School – CAPE Forum 2025 51 / 51


	Introduction
	Optimization for process modeling
	Optimization for process design
	Optimization for Real-Time Optimization
	Optimization for Advanced Process Control

	Optimization fundamentals
	Introduction and basic definitions
	Unconstrained optimization
	Common classes of optimization problems
	Optimality conditions for constrained optimization

	Optimization algorithms
	Unconstrained optimization
	Linear Programming (LP)
	Quadratic Programming (QP)
	NonLinear Programming (NLP)
	Solution methods for Optimal Control Problems

	Conclusions

