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Let’s start with a few questions

o What is an optimization problem?
o \What is process optimization?




Outline

0 Introduction
e Optimization fundamentals
e Optimization algorithms

° Conclusions
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Outline

e Introduction
@ Optimization for process modeling
@ Optimization for process design
@ Optimization for Real-Time Optimization
@ Optimization for Advanced Process Control
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Optimization for process modeling (1/4)

Three shades of models

First-principles models (white)

@ Detailed models, based on first
principles (mass, energy,
momentum balances, etc.)

@ Involve several parameters
@ Possibly complex to solve
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Optimization for process modeling (2/4)

Three shades of models

Black-box (statistical)

@ Empirical models based on
/ various expressions (linear,
T polynomial, etc.)
X B+ 67+ b 4 62 b T) o X @ Require experimental data from
o the plant
- @ The model parameters are
\ obtained via regression
techniques

Grey-box models
Similar to white-box models, but with (some) parameters determined from plant data

v
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Optimization for process modeling (3/4)
Model classification
Linear vs nonlinear

@ Most fundamental relations are nonlinear; however, they can be (locally) linearized
@ Linear models are simple (simplistic) but often useful

Static vs dynamic

@ Static models take some (static) inputs and produce the corresponding (static) output
@ Dynamic models take some time-series input to produce the output at a given time
@ Note that static models can also be used for dynamic purposes

Deterministic vs stochastic
@ Deterministic models produce the same output given the same set of inputs

@ Stochastic models take into account the effect of some random inputs, hence generate a
distribution of outputs given a set of deterministic inputs
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Optimization for process modeling (4/4)

Data-driven modeling: an iterative loop

Conceptual steps to build a data-driven model

Prior knowledge,

Input S

design

Detd Model set
collection
Fit criterion

[ Parameters identification }—
Model Bad model
Validation

Good model

Prior knowledge: from plant operators/engineers
and some preliminary tests

Input design: fundamental steps to cover the
operating range of the plant

Data collection: it is expensive so its duration
should be limited

Model set/Fit criterion: require experience and
engineering sense

Parameters identification: numerical algorithms
are quite reliable nowadays

Model validation: not easy to understand what
went wrong

v

Gabriele Pannocchia (U. Pisa) Process Optimizazion: applications, methods and algorithms GRICU/Nest PhD School - CAPE Forum 2025 8/51



Optimization for process design

Design and optimization of a simulation model

@ Develop the process and
simulate it

@ Choose the process/unit

= parameters (e.g., flow-rate,
temperatures, pressures, etc.)

@ Search for the most profitable
(CAPEX+OPEX) process/unit
parameters
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Optimization for Real-Time Optimization (1/4)

Hierarchical scheme of optimization, monitoring and control

Planning, Scheduling &
Monitoring

1l

Real Time Optimi

i

Advanced process control (MPCs)

i Il i

(1-7 days, what/when to make)

(1-6 h, plant economics)

(30-120 s, tracking economics)

Distributed Control System
(PID Controls)

(10-100 ms)

| S | A | S |

1

Actuators and Sensors

(<10 ms)
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Optimization for Real-Time Optimization (2/4)

Steady-state process simulators
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Optimization for Real-Time Optimization (3/4)

RTO and MPC: Bi-directional connection

Economic
specs

Filter | |

opt
RTO D MPCs

Filter =
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Optimization for Real-Time Optimization (4/4)

Examples of RTO and MPC variables

RTO variables MPC variables
Constraints Decisions to MPC Constraints Manipulated setpoints (in DCS)
Reactor conversion Desired targets Temperature Flow
Production rates Min/max limits Level Temperature
MPC constraints Costs/economic priorities Composition Pressure
Column DP Valve positions

Compressor power
Valve positions (PID outputs)
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Optimization for Advanced Process Control (1/5)

Hierarchical scheme of optimization, monitoring and control

Planning, Scheduling &
Monitoring

1

Real Time Optimization (1-6 h, plant economics)

I

Advanced proces:

i Il

Distributed Control System

(1-7 days, what/when to make)

(30-120 s, tracking economics)

(PID Controls) (10-100 ms)
Actuators and Sensors (<10 ms)
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Optimization for Advanced Process Control (2/5)

Process flow diagram of multistage evaporation
Forward feed triple effect arrangement

F7XFaTF

<

Conditions for heat integration
@ For heat transfer to be possible: T; > T, > T3

@ This is achieved by operating at decreasing pressures: p; > p> > p3
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Optimization for Advanced Process Control (3/5)

Mass and energy balances of multi-stage evaporation

First evaporator

Overall mass balance: 4% =F —[; -V,
Solute mass balance: M; £ = Fxg + (V; — F) x;
Energy balance: M; cp dt =Fc(Te—T1) — Vid+Q )

i—th evaporator (i = 2, 3)

Overall mass balance: 4% =1, ; —L; -V,
Solute mass balance: M; ‘th' = L, i1+ (Vi—Lisg) x
Energy balance: l\/l,cp dt' =L 16 (Tic1 — Ti) = Vidi+ VieiAiog )
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Optimization for Advanced Process Control (4/5)

Conventional control architecture

My, xa, T

Decentralized control structure
@ Each controlled variable is paired with a manipulated variable

@ A SISO PID controller is used for each pairing
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Multivariable system features
@ Interactions: each manipulated variable affects more than one controlled variable
@ Directionality: it is easier to “move” the system in certain “directions” than in others

@ Both manipulated and controlled variables should satisfy certain (safety, quality, operation)
constraints |

Opportunities
These needs coupled with economic reasons call(ed) for the adoption of advanced
optimization-based control techniques, able to:

@ Control all variables adjusting all manipulated variables simultaneously

@ Minimize energy and cost

@ Respect constraints
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Optimization for Advanced Process Control (5/5)

Advanced control architecture
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Outline

e Optimization fundamentals
@ Introduction and basic definitions

@ Unconstrained optimization
@ Common classes of optimization problems
@ Optimality conditions for constrained optimization
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What is an optimization problem?

Optimization is used in all quantitative sciences and engineering. Its aim is to minimize (or
maximize) an objective function depending on decision variables subject to constraints

The three ingredients Optimization problem
@ w e R": vector of variables
o ] o min F(w) s.t
@ F :R" — R: scalar objective function to be minimized wER?
@ G:R" = R™: vector function of m equality constraints Gi(w) = = I,...,m
H :R" — RP : vector function of p inequality constraints Hi(w) <0 i=1,...,p

@ Only in few special cases a closed-form solution exists

@ When F, G, H are nonlinear and smooth, we speak of a nonlinear programming problem
(NLP)

@ Usually we need iterative algorithms to find an approximate solution
@ In RTO and APC, the problem depends on parameters that change every sampling time
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Example of an optimization problem

Example and standard form
@ Starting problem

2
a . 2 . 2 . wy; — w2 S 0
min (wg —2)° 4+ (wp — 1) subject to{ — <2

@ Rewritten in standard form w
F(w) = (w; — 2)% 4+ (wp — 1), W=|: 1]

w1, n-[gE)- LA
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Classification of optimization problems

Possible criteria of classification

@ Optimization problems can be: constrained or unconstrained
@ Optimization problems can be: continuous or discrete (or mixed)
© Optimization problems can be: global or local

Our focus
We here address, mainly, constrained, continuous, local optimization problems and algorithms

o
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Optimization problems: Basic definitions

Feasible set and minimizers

The feasible set

The feasible set of the optimization problem is: @ A point w* € 2 is a global minimizer if
2{w e R"|G(w) =0, H(w) < 0} F(w*) < F(w) forall w € 22

Global and local minimizer

@ A point w* € {2 is a local minimizer if there
exists a neighborhood N of w* such that
F(w*) < F(w) forall w e A

2 2

—wy —wy; H12>

The feasible set is the intersection of the two
grey areas (halfspace and circle)

Gabriele Pannocchia (U. Pisa)

1 : 2
F(w) = 51::4 —2w® — 3w? + 12w + 10

4
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Optimization problems: Basic definitions

Convexity
Convex functions

Convex sets

0 €0, 1], it holds: Ow; + (I — 0wy € 2

A function F : 2 — R is convex if for any
A set 2 is convex if for any w;, w, € 2and any | w;,w, € 2 and any 6 € [0, 1], it holds:
F(9W1 + (1 = 9)W2) < 9F(W1) + (1 = Q)F(WQ)

AN

OF (wi) + (1= 0)F (w,)

F(0w, + (1 - 0)uw)

4
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Optimization problems: Basic definitions

Convex optimization problems

A convex optimization problem

min F(w) s.t.

weRn
G(w)=0
H(w) <0

in which:
@ F(-) is a convex function
o 2H{w eR"|G(w) =0, Hw) <0}isa
convex set

Gabriele Pannocchia (U. Pisa)
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Properties of convex problems

@ For convex problems, every locally
optimal solution is globally optimal

@ First order conditions are necessary and
sufficient

@ “...in fact, the great watershed in
optimization isn’t between linearity and
nonlinearity, but convexity and
nonconvexity.” R. T. Rockafellar, SIAM
Review, 1993
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Unconstrained optimization: preliminary definitions

Definitions

@ A point w* € R" is a global minimum if F(w*) < F(w) for all w € R” (or in the domain for
which F(.) is defined)

@ A point w* € R" is a local minimum if there exists a neighborhood A of w* such that
F(w*) < F(w) forall w e N

Fundamental result 1
If F(-) is differentiable, then for any p € R":

F(w+p)=F(w)+VF(w+tp)'p withtec(0,1)

Fundamental result 2
If F(-) is twice differentiable, then for any p € R":

1
F(w+p)=F(w)+VF(w) p+ EpTV2F(X+ tp)p witht € (0,1)

Gabriele Pannocchia (U. Pisa) Process Optimizazion: applications, methods and algorithms GRICU/Nest PhD School - CAPE Forum 2025

27/51



Optimization problems: common classes

Class 1: Linear programming (LP)

Linear Program (LP)

min g'w s.t.

weRn?
Av — b =20
Cw—-d<o0

@ Convex optimization problem

@ 1947: simplex method by G. Dantzig

@ A solution is always at a vertex of the feasible set (possibly a whole facet if nonunique)
@ Very mature and reliable, with many applications in planning/scheduling problems
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Optimization problems: common classes
Class 2: Quadratic programming (QP)

Quadratic Program (QP)

1 7 T
VI;I’;IHIQHEW Qw+g'w st

Av — b =20
Cw—-—d<o0

@ Convex optimization problem when Q positive definite
@ Solved online in Linear Model Predictive Control

@ Many good solvers

@ Subproblems in nonlinear optimization
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Optimization problems: common classes

Class 3: Nonlinear programming (NLP)

NonLinear Program (NLP) '\
v%iﬂ?n F(w) s.t.

@ Can be convex or nonconvex
@ Solved online in Nonlinear Model Predictive Control
@ Several good solvers, usually based on Newton-type algorithms

GRICU/Nest PhD School - CAPE Forum 2025
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Optimization problems: common classes
Class 4: Continuous-Time Optimal Control (CTOC)

Optimal Control Problem (OCP) @ Decision variables x(-), u(-) in infinite
- dimensional function space

min / Le(x(t),u(t))dt + V(x(T)) st @ Infinitely many constraints (t € [0, T])
“Eet) e B @ More general dynamic model can be used
x(0) = x (DAE, PDE, nonsmooth or stochastic ODE)

X(t) = fe(x(t), u(t)), te[0,T] @ Can be convex or nonconvex
h(x(t), u(t)) <0, tel0,T] @ All or some components of u(t) may take
r(x(T)) <0 integer values (mixed-integer OCP)
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Constrained optimization: example 1
Solve

min w; + ws s.t. widwi=2

Standard notation, feasibility region and solution
@ In standard notation: F(w) = w; + wz, G(w) = [2 — wi — w3], H(w) =[]
@ Feasibility region: circle of radius v/2, only the border
@ Solution: w* =[-1,-1]"

Observation

vew) =[], vewn =]

The normal vector at the constraint, VG, (w*), is parallel to the cost function gradient VF (w*):

1
VE(W") +piVGi(w) =0 withpj = —2

v
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Constrained optimization: example 2
Solve

min w; + ws s. t. W12+W22§2

Standard notation, feasibility region and solution
@ In standard notation: F(w) = w; + wa, G(w) =[], H(w) = [wf + w3 — 2]
@ Feasibility region: circle of radius v/2, including the interior
@ Solution: w* =[-1,-1]"

Observation
* 1 * =Z
VF(w*) = L}, VH;(x*) = [_2}
The normal vector at the constraint, VH; (x*), is parallel to the cost function gradient Vf(x*):

1
VF() + A VHi(w) =0 with A} = 3

v
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Optimality conditions for constrained optimization
KKT conditions

Lagrangian Function

L(w,p,\) = F(w) +pu" G(w) +ATH(w)

Karush-Kuhn-Tucker (KKT) necessary conditions
If w* is a (local) minimizer, there exists vectors p* and A\* such that (w*, u*, \*) satisfies:

VLW, u*, ) =0

G(w*)=0

H(w*) <0

A>0
AHi(w*)=0, i=1,...,p
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Outline

e Optimization algorithms
Unconstrained optimization
@ Linear Programming (LP)

@ Quadratic Programming (QP)
°

°

NonLinear Programming (NLP)
Solution methods for Optimal Control Problems
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Unconstrained optimization: general strategies

lterative algorithms

Starting from an initial point wy, optimization algorithms generate a sequence of iterates {wx }«>0,
and terminate when

@ No further progresses are possible or
Q It “seems” that the current iterate is a good approximation of the solution

Step computation

In deciding how to move from wy to wy,;, numerical algorithms use information about f at the
current iterate wy and often at previous iterates (wy_j, wx_», ...)

Fundamental strategies
@ “Line search” methods
@ “Trust region” methods
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“Line search” strategy (1/2)

Basic idea

The “line search” strategy chooses a step direction py and then try to minimize F(-) over the
segment connecting wy and wy + py, i.e.

min F
a>0 (wic + api)

Most common directions
@ The most intuitive direction is the so-called “steepest descent”, i.e.:
pk = —V F(wg)
@ Newton step (often the most effective):
pi = —[VZF(wi)] T VF (w)
@ “quasi-Newton” step (cheaper to compute):
px = — By 1V F(wy) with By ~ V2 F (wy)

Gabriele Pannocchia (U. Pisa)
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“Line search” strategy (2/2)

Sufficient decrease condition
@ Instead of solving the unidimensional problem
min F(wi + api)

we look for a step length « that satisfies certain conditions
@ A sufficient decrease condition is called Wolfe condition:
F(Wk = Otkpk) < F(Wk) + c; akVF(Wk)Tpk

with ¢; small (~ 10=%)

Backtracking
@ Set o)y = amax (usually amax = 1)
© Check the Wolfe condition. If satisfied, go to Step 4. Else, go to Step 3
© Decrease «y, and go to Step 2

© Define new iterate: wy,; = wi + axpk

v
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“Trust region” strategy (1/2)

Basic idea: a model function
@ Build a model function my(-) which approximates F(-) near wy
@ Compute the step that minimizes my(-) with a trust region
rr;in my(wi + px) where wy + py is in the trust region

Quadratic model and step evaluation
@ The most common model function is quadratic. Hence we solve:

min mk(pk) = F(Wk) aF VF(W/() Pk +

B s.t. <A
i) 2Pk kPk llpll < Ak

@ Very often we use an approximate solution (a.k.a. Cauchy point). Let gx = VF(wy). Then:

if g/ Brgk < 0

1
_ Ay * H *
Pk = —EkTg " » with 7 {min (% 1) otherwise
kgk 8
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"Trust region” strategy (2/2)

Step acceptance/rejection and trust-region size changes
@ In order to decide whether the step is acceptable or not, evaluate:

F(wk) — F(wk + px)
mi(0) — mi(p)

Pk =

@ Rules of thumb:
if pi < L: reject py, i.e. wiq1 = wi, and reduce the trust-region A,y = 1A,
if Pk > l, accept p, i.e. Wkt1 = Wk + Pk
if px > 7 and ||pk|| = A, accept py, i.e. wiy1 = wik + pk, and enlarge the trust-region Ay ; = 244
4
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Linear programming (LP): introduction
LP in standard form
ming’x  subjectto Aw = b, w > 0

where: g € R", w € R", A € RP*", b € RP and rank(A) = p

Optimality conditions
@ Lagrangian function: £L(w,u,\) = g"w + p" (Aw — b) — ATw
@ If w* is solution of the linear program, then:

g+AT L =X =0
Aw* = b
w* >0
A >0

wiAF =0, i=1,...,n

Gabriele Pannocchia (U. Pisa) Process Optimizazion: applications, methods and algorithms GRICU/Nest PhD School - CAPE Forum 2025

41/51



Linear programming (LP): the simplex method

The “base points”
A point w € R" is a base point if
@ Aw=bandw > 0
@ At most p components of w are nonzero
@ The columns of A corresponding to the nonzero elements are linearly independent

Fundamental aspects of the simplex method
@ Base points are vertices of the feasibility region
@ The solution is a base point

@ The simplex method iterates from a base point w, to another one w;_;, and stops when all
components of A\, are nonnegative

@ When a component of )\ is negative, a new base point wy ; in which the corresponding
element of wy is nonzero is selected
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Quadratic Programming (QP)

Introduction

Standard form

1
Mr/réiﬂgln EWTQW +g’w

subject to:

Aw — b =0
Cw—-d<o0
4
The active set
Aw)={ie{1,...,m} | (Cw—d); =0} )
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Quadratic Programming (QP)

Optimality conditions

Lagrangian function

1
L(x, p, A) = EWTQW +g w4 u"(Aw — b) + AT (Cw — d)

Optimality conditions (KKT)

QW*+g+AT/,L*+CT)\*:0

Aw* —b =10
Cw*—d<o0
AF >0 i=1,...,m

N=0 ¢ Aw)
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Quadratic Programming (QP)

Active set methods for convex QP problem

Fundamental steps

@ Given a feasible wy, we evaluate its active set and build:
Cac = C[i, 1], dae = d[i], forall i € A(wy)

@ Express next iterate as wy + px and solve the KKT linear system:

Q AT 1] [p« Qwi + g
A 0 0 w|l=—1| Awg—>b
Cac 0 0 >\ac Cac Wi — dac

If ||pk|| < pand A,c > 0, stop: w is the solution.

If || pk]| < pand A\, # 0 for some components, remove from the new active set A(w. ;) such

indices. k + k+ 1 and go to 2.

Q@ If ||pkll > p, define wyi 1 = wi + axpk, Where o is the largest scalar in (0, 1] such that no
inequality constraint is violated. When a blocking constraint is found, it is included in the new
active set A(wyy1). k< k+ 1andgoto 1.

©0

__ 4
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NonLinear Programming

Problem formulation

weR?
G(w)=10
Hw) <0

Lagrangian Function

L(w, @, \) = F(w) +pu" G(w) +ATH(w)

Gabriele Pannocchia (U. Pisa)
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NLP solution algorithms
Sequential Quadratic Programming (SQP)

By linearizing all functions and setting w* = w* + Aw, ut = ¥ + Ap, AT = Ak + A\, we obtain
the KKT conditions of the following Quadratic Program (QP):

Inequality constrained Quadratic Program within SQP method

min inAkw+VF(wk)TAw s.t.
AweRn 2
G(w") + VG(wh)Aw = 0
H(w*) + VH(wW*) Aw < 0

with: Ak = V2 £(wk, uk, k)

Its solution delivers the next SQP iterate: Aw*, ut, AT

Gabriele Pannocchia (U. Pisa)

Process Optimizazion: applications, methods and algorithms GRICU/Nest PhD School — CAPE Forum 2025 47/51




Solution methods for Optimal Control Problems

Overview

Three basic families
@ Dynamic Programming / Hamilton-Jacobi-Bellmann Equation
@ Indirect Methods / Calculus of Variations / Pontryagin’s Maximum Principle
@ Direct Methods, i.e., discretization combined with nonlinear programming

Pros and Cons

Dynamic programming Indirect methods Direct methods

+ Searches whole state space + Boundary value problems with + Can use state-of-the-art NLP
(global minimum) only 2n, ODE selvars

+ Optimization feedback control - Need explicit expressions for + Can treat inequality constraints
precomputed controls

- Obtain onl

+ Analytical solution possible in - ODE strongly nonlinear and suboptima¥/approximate
some cases unstable selvifene

- But, in general, intractable - inequalities lead to ODE with .
(“curse of dimensionality”) state dependent switches Nowadays, most widely used

v
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Solution methods for Optimal Control Problems

Direct methods

Continuous-Time OCP

x(+),u(-)

h(x(t),u(t)) <0, telo,T]
)

Direct methods first discretize, then optimize

.,
min / Ce(x(t), u(t))dt + V(x(T)) sit.
0

Discrete-Time OCP
N—1

min f(Xk, uk) + V(XN) s.t.
x(hu() =

X():)?
Xk+1=f(Xk,Uk), k=0,...,N—1
h(xk,uk)§0, k = ,...,N—l
)

/ can be lumped in vector w = (x, u) € R”

Gabriele Pannocchia (U. Pisa)
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Variables x = (xg, ..., xn), u = (Ug, ..., Un—1)

min F(w) s.t.

Gw)=0
H(w) <0
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Outline

° Conclusions
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Conclusions

General comments
@ Numerical optimization is powerful and useful for may areas of science and engineering
@ The most reliable and efficient algorithms are for linear programming (LP) and quadratic
programming (QP) problems

@ Nonlinear programming (NLP) problems are solved by means of Sequential Quadratic
Programming (SQP) algorithms, which are very effective (global solution can be found) only
for convex problems

Numerical optimization in Aspen Hysys/UniSim Design
@ UniSim Design contains a general purpose SQP optimizer

@ One can use the optimizer to find the operating conditions which minimize (or maximize) an
objective function subject to constraints
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